pca.Rd
This function is used to perform Principal Component Analysis (PCA).
pca(X, pc = 2, scale = "UV", center = TRUE, method = "nipals")
X | Numeric input matrix with each row representing an observation and each column a metabolic variable. |
---|---|
pc | Desired number of principal components. |
scale | Desired scaling method: |
method | Algorithm for computing PCA. NIPALS is default and usually fine, see Details for other methods. |
This function returns a PCA_metabom8 S4 object.
Other PCA algorithms build on the pcaMethods R package and include: 'svd', 'ppca', 'svdImpute', 'robustPca', 'nlpca'. For complete list of available methods see ?pcaMethods::pca
documentation.
Geladi, P and Kowalski, B.R. (1986), Partial least squares and regression: a tutorial. Analytica Chimica Acta, 185, 1-17.
Other NMR ++:
.hotellingsT2()
,
cvanova()
,
es_cdelta()
,
minmax()
,
opls_perm()
,
plotscores()
,
pqn()
,
predict_opls()
,
scRange()
Torben Kimhofer torben.kimhofer@murdoch.edu.au
#>#> Error in names(x) <- value: 'names' attribute [3] must be the same length as the vector [0]