Skip to contents

Import 1D NMR data

read1d() read1d_proc()
Import 1D NMR spectra (TopSpin processed)
read1d_raw()
Read Raw 1D NMR FIDs and Process to Spectra

Visualising spectra

matspec()
Plot Overlayed NMR Spectra
spec()
Plot a Single NMR Spectrum
specOverlay()
Overlay NMR Spectra Using ggplot2

Pre-processing and quality control

alignSegment()
Align NMR Spectra via Cross-Correlation
binning()
Spectral data binning
bline() bcor()
Baseline Correction for 1D NMR Spectra
calibrate()
Chemical Shift Calibration
excise1d()
Excise Standard Chemical Shift Regions from NMR Spectra
get_idx() get.idx()
Select Indices for a Chemical Shift Region
lw()
Full Width at Half Maximum (FWHM) Estimation
noise.est()
Estimate Noise Level in 1D NMR Spectra
normErectic()
Normalize Spectra Using ERETIC Signal
pqn()
Probabilistic Quotient Normalisation (PQN)

Scalings, effect size

es_cdelta()
Cliff's Delta Effect Size
minmax()
Min-Max Scaling to \([0,1]\)
scRange()
Min-Max Scaling to Arbitrary Range

PCA and O-PLS modelling and interpretation

cvanova()
Cross-validated ANOVA for O-PLS models
dmodx()
Distance to the Model in X-Space (DModX)
eruption()
Eruption Plot for OPLS-DA Model Interpretation
opls()
#' @title Orthogonal Partial Least Squares (O-PLS) #' #' @description #' Fits an Orthogonal Projections to Latent Structures (O-PLS) model for regression or classification. #' The number of orthogonal components is automatically selected using internal cross-validation. #' To avoid underfitting, components are added incrementally, while overfitting is prevented by requiring that each new component improves predictive performance beyond a defined threshold (ΔQ² / ΔAUROC > 0.05). This ensures the model captures relevant structure without modelling noise or irrelevant variation.
opls_perm()
OPLS Model Validation via Y-Permutation
pca()
Principal Component Analysis (PCA)
ppick()
Find Local Extrema in NMR Spectra (Peak Picking)
plotload()
Visualize PCA or OPLS Loadings for NMR Data
plotscores()
Plot PCA, PLS or OPLS Model Scores
pls()
Partial Least Squares (PLS)
predict_opls()
Predict New Data Using an OPLS Model
specload()
Overlay Loadings with NMR Spectra

Metabolite identification

stocsy()
Statistical Total Correlation Spectroscopy (STOCSY)
storm()
Subset Optimisation by Reference Matching (STORM)
plotStocsy()
Plot Statistical Total Correlation Spectroscopy (STOCSY)

Class definitions

OPLS_metabom8-class
OPLS model object from metabom8
PLS_metabom8-class
PLS model object from metabom8
PCA_metabom8-class
PCA model object from metabom8
stocsy1d_metabom8-class
STOCSY model object from metabom8

Datasets

covid
COVID-19 blood plasma proton NMR spectra (processed)
covid_raw
COVID-19 blood plasma proton NMR spectra (raw)